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NUMERICAL METHOD FOR THE SOLUTION OF PROBLEMS OF NONSTEADY 

NONLINEAR THERMAL CONDUCTION OF COMPLEX TdO-DIMENSIONAL BODIES 

G. K. Malikov UDC 536.24.02 

The method involves the use of a nonrectangu!ar orthogonal grid, the form of 
which is determined by the boundary of the body; a single calculation algo- 
rithm suitable for bodies of various shapes is obtained. 

Using the well-known finite-difference method [i], it is difficult to construct a single 
algorithm for the temperature field of two-dimensional bodies of various shapes; this is be- 
cause a rectangular grid, as a rule, provides a poor fit to the boundaries of the body and 
requires individual programming for each body. 

In physical terms, the essence of the phenomenon is that heat fluxes flow from the bound- 
ary into the body and meet at centers or lines of symmetry of the body; accordingly, con- 
sider a system of coordinate lines y in the form of straight lines from the boundary running 
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Fig. i. Division of bodies into elements and cal- 
culational scheme for an element (g). 

into the body, and another system of coordinate lines x normal to the first set, consisting 
of segments of straight lines and arcs of circles. For a given class of bodies it is then 
possible to obtain a set of standard elements, the thermal fields of which conform to a single 
calculation algorithm. 

The principles of construction of such a grid are best explained using examples (Fig. i). 

A body whose dimensions in various directions are not greatly different, which is 
heated (or cooled) in all directions, has a cylindrical system of coordinates, the origin of 
which -- a pole -- is approximately at the center of mass of the body (Fig. la-d); when a 
rectangle is heated in all directions (Fig. le), the body has a mixed cylindrical and rect- 
angular system of coordinates with two poles. A wedge (Fig. if) has two poles on the in- 
sulated side (q = 0), each pole serving as the origin of a cylindrical coordinate system. In 
Fig. la-f the boundaries of the elements are shown by dashed lines, and some of the elements 
are shaded. Such an orthogonal grid may also be constructed for bodies as complex as those 
encountered in practice (see, for example, the blank for preparing an I-beam--Fig. lh). 

The following rules are adopted to standardize the calculational process for dividing a 
body into elements: 

i) each of the elements into which the body is divided must have at least one external 
boundary, coinciding with the boundary of the body, and one internal boundary (which may be 
of zero length) approximately coinciding with a line of symmetry of the body or a line of 
zero heat flux (if known); the straight line joining the midpoint of the external and in many 
cases the internal boundary of the element is called the radius; 

2) three transverse lines x intersect each radius. 

Now consider the thermal-conduction equation in a curvilinear orthogonal system of coordi- 
nates x, y [when dx = dx(x, y) and dy = dy(x, y)]: 

p c - -  
o(or)  o( o ,d o ~ axay = ay dx + dx -g- y ) y, (1) 
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where %, 0, and c are functions of the temperature. In order to use the method of alternat- 
ing directions, this equation is separated into two one-dimensional equations [2] 

Oc at dx= av ( , (2) 

at O ( at i (3) 

which are solved successively for all the elements: first in the direction y -- Eq. (2) -- and 
then in the direction x -- Eq. (3). The initial condition is that, when T = 0, t(x, y) = to. 
One boundary condition for Eq. (2) is that when y = 0, hdt/dy = ~(t -- tcirc) + q, where ~, 
tcirc, and q are given functions of the coordinate and time; at the internal boundary the 
matching conditions for two elements are satisfied (equality of temperature and heat fluxes). 

For Eq. (3) the matching condition for the first and second elements is satisfied if the 
line x is closed inside the body or the condition %dt/dx = 0 if the element is bounded by a 
heat-flux symmetry line. 

The integral-balance method is used to solve Eq. (2). The calculation scheme of this 
method for the i-th element A'B'C'D' is shown in Fig. ig. 

The coordinate origin is chosen at the external boundary of the element, coinciding with 
the boundary of the body; the y axis runs along the radius of the element (into the body). 
Drawing from the points A'B'C'D' straight lines parallel to the radius that intersect with 
the normals to the radius at the points y = 0 and y = Rc, we obtain a new calculational ele- 
ment ABCD, practically equivalent in area to the original. Introducing [3] the thickness of 
heating (cooling) element R (a running radius, beyond which the temperature still has its initial 
value), the temperature field of the heated (cooled) part of the element may be characterized 
by a parabola passing through three points with coordinates y = 0, 0.5R, and R and correspond- 
ing temperatures t~, t2, and t3: 

t = tiag,j (g/R)g= tflg,i~g, (4) 

where ~ = y/R. This formula, and those below, employs the convention of tensor analysis by 
which the summation sign is omitted if summation over repeating indices is implied. Here 
ag,j denotes the following set of nine coefficients: ao,1 = I, ao,2 = 0, ao,3 = 0, ai,1 = 
--3, ai,2 : 4, ai,3 = --i, a2,1 = 2, a2,2 =--4, and a2,s = 2. 

Substituting I for t, an expression analogous to Eq. (4) can be written for the enthalpy. 

The running transverse dimension of the element dx (along the y axis) is defined as the 
value of the normal to the radius depending linearly on y 

d x ~ N  = NI+ N~g = Nmg ~-I (m--  1,2), (5) 

where 

NI~ Llsin %; N2= (L2sin %--Ltsin ~I)/R~. 

I t  i s  s imple to e s t a b l i s h  t h a t  

Y~ 

~f Ndg = Nm ym ~, 
I n  g t 

g l  

gives the area of the part of the element included between the coordinates Yl and Y2. 
tegrating Eq. (2) between y and R gives 

(Sa) 

In- 

R 

ag 
g 

(6) 
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If t and I in the form in Eq. (4) and N in the form in Eq. (5) are substituted into Eq. (6), 
the result is 

(1 - -  TIg+m)ag,#NmR m Oly 1 (I - -  ~lg+m)ag,jN,~R"~-alj 
O~ (g+m) 

OR 1 
x 0---~ (g+m~ -- (~R-- ~.~n g+''-z) tjgag,~Nm/R, 

g = 0 ,  1, 2; ] =  1, 2, 3; m =  1, 2. 

(7) 

Taking the values ~, = 0.5, q2 = 0.25, and q3 = 0 obtained from preliminary calcula- 
tions, Eq. (7) gives a system of three equations: 

B,,ja6 + ~a~ = c , ,  (8) 

where 

Cs=(ds ds,~) ljAT-- ds (s = 1, 2); 

Bs,i---- (I - -  nf+m)agdNn, Rm/(g -+- m) + AB,,j l 
I 

i3, = - -  ( 1 -g+m'a gN R m- 11 /t~ -k m) [ - -  ' I s  ) g , J ~  m . # ~ g  

d~,f = )~n=lgag,iN~/R ] , 
J 

d~,j=. ~m=%gag,jNm rlgs+m-2 /R [ 

ABs,3=--  (ds dsd ) A'r/2 1 

(9) 

and ~j is the temperature in an element having a common internal boundary L2 with the given 
element. At the external boundary of the element of length L, (s = 3), the boundary condi- 
tion is satisfied, i.e., Cs is calculated from the formula 

C3= [~ (tl--~ir0 q- q] L~A~. 

The increments ABs, j = 0 Cs/0t j to Bs, j in Eq. (9) arise because the coefficients C s are 
not taken at the moment x, but at the midpoint of a time interval, i.e., at the moment x + 
AT/2 at temperatures tj + Atj/2; in fact, 

AB3,~= AB3,3= 0; AB3,1= OCelOt,. 

In this case the stability of the system is increased by an order of magnitude. 

At the first stage of heating, Eq. (8) is solved for the unknowns R, tx, and t= (t3 is 
equal to the initial temperature). 

At the second stage, when R = Rc, Eq. (8) is solved for the unknowns tx, ta, and t3. 

When the temperature of all the elements at the given moment of time has been calculated 
from Eqs. (8) and (9), i.e., the solution of Eq. (2) in the direction y is finished, Eq. (3) 
is solved in the direction x. 

To do so, the volume of each element is divided into three parts [see Fig. lh, where the 
shading indicates the middle part of the volumes, and the crosses denote points of intersec- 
tion of radial (y) and transverse (x) lines]. 

In calculating the volume of each part it is noted that the boundaries cf the middle 
part run midway between points of intersection of the radial and transverse lines. 

We now have three series of curvilinear volumes, corresponding to the number of trans- 
verse lines x. It is possible to solve Eq. (3) by an implicit method, for example, the 
Crank--Nicholson method, but adequate accuracy will only be obtained if AT < k(Ax)=/a, where, 
as found in carrying out the present calculations and also in [4], k < 2.5. Since, in our 
grid, sections with small Ax may be encountered, the calculationtime will be high. The time 
step can be increased by the following method; the appropriate calculation scheme for the 
series considered (indicated by the shading in Fig. lh) is shown in Fig. 2. 
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Fig. 2. Calculation of transverse 
overflow between elements. 

First consider the thermal interaction of only two volumes Vo and V~ with a common bound- 
ary s: and a distance ~ between their centers, in this case, Eq. (3) corresponds to the 
following expression (noting that it corresponds to dx and s~ to dy): 

dto= a, s, (tl_to)d.c ' (i0) 
Vo ll 

which may be written in the form 

dto= al Sl (W~ Wa) (t~--to)d~, ( l l )  
Vo ll W1 

where 

t s =  (Qo+ QO/(Wo+ w1); Qi= p~CiV~ti; W~= piC~V i. (12) 

Since the mean temperature t s of an isolated system of two volumes is constant over time, in- 
tegrating Eq. (ii) gives, for any AT, the result 

Ato= CI(t 1 -  to) [1 - -  exp (-- ~qAz)]; 
CI= W1/(Wo-~ WI), ~11= alsl/llVoC1. 

(13) 

( 1 4 )  

Now consider separately the interaction of a volume Vo and V:a = V~ + V2; assume that the 
temperature of V~a is 

In this case, 

Ato= C~2 (t~2-- to) [1 - -  exp ( - -  p2A~)] 

: C12 / (~71+  IY/2) ' [['~71 ( t l - -  to) + ~f2 ( t 2 - -  {0)] [ I  - -  exp ( - -  ~t2AT)], 

P2= alsJ(l12VoC~2), Pi= alSl/(lliVoCli), 

and lla is the distance between the centers of the volumes Vo and Via 

(15) 

(16) 

l~i= (liVe+ I.,V~§ . . .  + liVi)/(V~+ V.2+ . . .  + V0; 

Cl i  = (WI" @ W2 ' ~ " "" ~--I ~Vi)/'(Wo_]_ WI_~ . . .  + Wi), 

Now assume that the simultaneous interaction of two pairs of volumes (Vo and VI) and (Vo and 
VI=) may be written in the form 

At o = [km ( q - -  t o) + ka, 2 (t 2 -  to) ] [1 - -  exp ( - -  ,u~AT)] 

+ [k2,1 (t 1 -  t o) ~- k2, ~ (t 2 -  to) ] [1 - -  exp ( - -  p.2A~)], (17)  

where ~i and Vz are given by Eqs. (14) and (16). By analogy, the formula for the interaction 
of the volume Vo with n volumes lying to the right of Vo is 

Ato, R ---- [k1,1 ( t l - -  to) -~ ki,2 (/2-- to)] [ I - -  exp ( - -  v~A~)] 

+ [k.,,~ (t~-- to) + k2, 2 (t 2 -  to) + k2, ~ (t,~-- to) ] [I - -  exp ( - -  tGA~)] + 
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Fig. 3. Temperature curves for the 
heating of an 1-beam (Fig. lh): the 
continuous curves show results given 
by the new method; the points give 
results obtained by the method of 
[5]. t, ~ T, min. 

+ [k~, a (~-- ~) + ka, 4 (t 4 -  ~)] [1 - -  exp ( - -  ~aAx)] + . . .  

+ [ks,~ (t~-- ~) + k~,~+ 1 (ti§ ta)l [ 1 - -  exp ( - -  ~AT)I + . . .  + [k,,n (tn-- to)l [ 1 - -  exp ( - -  ~ A ~ ] .  (18)  

The number n is chosen according to the inequality I n > 1.5 a/~, where Z n is the distance 

from Vo to Vn; in our present calculations, n = 1-3. ' 

Analogously, an expression can be written for the thermal interaction of the volume Vo 
with m volumes lying to the left, with negative subscripts from --i to -xn. 

The total change of temperature in the volume Vo is 

A ~ =  A~, R + A~, L. (19)  

The coefficients ki, j are determined from the limiting conditions: as AT + 0 

Ato= al sl ( t l _  to ) + _ _  . ( t _ ~ - - t o )  AT, (20) 
Vo ll Vo 1-1 

as AT § =, to tends to the mean temperature t s of all the volumes, i.e,, 

n n 

These conditions give the following pairs of equations: 

as Az - -+  0 

as A~-+ oo 

as A'~.-+ 0 

as AT--+ oo 

ki,i~r-{- ki+z,i~i+z = aisi/(liVo)' ] 

n 

- - m .  

ki,#i + ki_~,#i_, = O, I 
I 

k~,,+ki-z,i=WJ(_~Wi), I 

I for i = ~ I ,  

L 

for i=#d: l,  

where z = sign (i). 
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Calculation by Eqs. (18) and (19) is convenient, because it is absolutely stable and 
sufficiently accurate for a time step far larger than that of implicit methods such as the 
Crank--Nicholson method. 

This method of calculation gives results that are in fair agreement with the known ac- 
curate solutions for simple bodies [i]: the mean-square error does not exceed 0.1-0.2% for 
a cylinder and a plate (over three temperatures) and 0.2-0.4% for a square (over 24 points) 
for a Blot number less than unity and does not exceed 1-2% and 2-4%, respectively, for a 
Blot number higher than i0. On a Minsk-22 computer the calculation of one temperature for 
one element over one time step took 2-3 sec. For a square of eight elements, dividing the 
total heating interval into 20-30 steps, the calculation required 8-10 min and provided the 
accuracy given above. 

In Fig~ 3 results obtained using the new method and the finite-difference method (the 
latter obtained by V. M. Malkin at the All-Union Scientific-Research Institute of Metallur- 
gical Thermoengineeringusing the scheme given in [5]) are compared for the heating of the I- 
beam in Fig. lh under the following conditions: % = 29.1 W/(m.deg), c = 0.688 kJ/(kg.deg), 
p = 7800 kg/m 3, ambient temperature 1000~ initial temperature of body 0~ and heat-trans- 
fer coefficient 163 W/(m2.deg). As is evident, the two methods give approximately the same 
results, while the new method is approximately twice as fast as the finite-difference method. 

The major advantage of the method outlined in the present paper is that in passing from 
one body to another it is necessary to change only the initial data (as shown by experience 
in carrying out calculations, this takes no more than 6-8 h, including construction of the 
grid), retaining the program unchanged. 

NOTATION 

x, y, coordinates (x is transverse to the radius; y is directed into the element along 
the radius); R, thickness of heating (cooling) of the element; Rc, longitudinal dimension of 
element; LI, L2, external and internal boundaries of element; ~ = y/R, dimensionless coordi- 
nate; In, distance between the given element and its neighbor; ~I, ~2, angles between L~, L= 
and Rc; N, running transverse dimension of element; V, volume; sl, s-~, length of line of 
contact of the given element with its neighbor to the right and to the left; t, temperature; 
I, enthalpy; a, thermal conductivity (a~ = ~/poCo; a_~ = ~-i/poco); ~, thermal conductivity; 
Qi = piciViti; Wi = oiciVi �9 
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